US006434532B2

a2 United States Patent
Goldband et al.

(10) Patent No.:
5) Date of Patent:

US 6,434,532 B2
*Aug. 13, 2002

OTHER PUBLICATIONS

“D&B Software Makes Available First Complete Client/
Server Application Over The Internet;” Business Wire;
p3251039; Mar. 25, 1996.*

“Apple USA expands online customer support beginning
with Eworld for Maclntosh;” PR Newswire; pN/A; Jul. 28,

Primary Examiner—Wynn Coggins
Assistant Examiner—Forest Thompson
(74) Antorney, Agent, or Firm—Burns, Doane, Swecker &

ABSTRACT

Broad-based, systematic, individualized, interactive cus-
tomer software support is provided through a two-way,
voluntary automated exchange of information between a
software agent installed on a customer’s machine and a
server machine via a wide area computer network, e.g., the
Internet. Communication between the agent and the server is
optimized to be unobtrusive or transparent, e.g. using spare
bandwidth of intermittent Internet connections. The agent is
software non-specific and may be instructed to operate with
respect to any arbitrary software program, and may further
be instructed at various different times to operate with
respect to various different software programs, including
multiple different software programs on a single machine.
The agent, with the user’s informed consent, gathers activity
information about the operations of the software program(s)
and uploads this information to a particular server machine
within a distributed server machine architecture, where it is
stored in a database on a per-software-copy basis. A rules
engine may cause instructions carrying a message targeted
specifically toward the customer to be downloaded to the
agent. Based on these instructions, the agent may take any
of various actions, such as present a survey, present an
advertisement, send an upgrade notice, present a limited-
time offer, deliver individualized marketing messages, offer
goods for sale and fulfill the commercial transaction, install
an upgrade or bug fix for either an application or the agent
itself, etc. Message presentation to the customer may be
timed (e.g., delayed from the time of download) to achieve
maximum impact.

30 Claims, 8 Drawing Sheets

(54) INTERACTIVE CUSTOMER SUPPORT FOR
COMPUTER PROGRAMS USING NETWORK
CONNECTION OF USER MACHINE

(75) Inventors: Steve Goldband, Palo Alto; Ron van

Os, Sunnyvale; Jeffrey Barth, Stanford,
all of CA (US) 1994 *
(73) Assignee: Aladdin Knowledge Systems, Ltd., Tel
Aviv (IL)
(*) Notice: This. patent i.ssufzd on a continued pros- Mathis L.L.P.
ecution application filed under 37 CFR
1.53(d), and is subject to the twenty year G7
patent term provisions of 35 U.S.C.
154(a)(2).
Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/041,315

(22) Filed: Mar. 12, 1998

(51) Int. CL7 oo GO6F 17/60

(52) US. Cl oot 705/7

(58) Field of Searchccccccce.ce. 705/1, 7, 26, 28;

395/200, 21, 200.5, 200.53, 200.3, 703,
712, 200.31; 707/203, 8; 380/23
(56) References Cited

U.S. PATENT DOCUMENTS
5,367,635 A * 11/1994 Bauer et al. 709/221
5,406,269 A 4/1995 Baran . 340/825.17
5,432,040 A 7/1995 Potts et al. ovevrvevennnee. 395/700

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

EP 0 841 616 * 5/1998

EP 0 878 760 * 11/1998

EP 0905 615 * 3/1999

WO WO/97/07656 3/1997

USER
MACHINE

APPLICATION(S)

)

o
h—|

RUN-TIME
ENVIROMENT

PERSISTANT
AGENT [

N

\

N

SERVER

RDBMS

RULES
ENGINE

US 6,434,532 B2

U.S. PATENT DOCUMENTS

*

*

* 3/1998 Kullick et al. ...
* 6/1998 Kullick et al. ...
* 6/1998 Schneier et al. .
* 6/1998 Hattori et al. ...
* 9/1998 May et al. ...
* 11/1998 Barker
*

> > > > B > >

8/1997 Bonnell et al. 709/202
12/1997 Reismanc.eeeeee..

12/1998 Fawcettc......

5,848,143
5,859,969
5,862,325
5,867,714
5,870,610
5,913,040
5,931,907
6,178,449

e i i i g

=

* 12/1998
1/1999
1/1999
2/1999
2/1999
6/1999
8/1999
1/2001

L3R SR T R T

* cited by examiner

Andrews et al. 379/219
OKi et al. ... 395/200.3
Reed et al. 395/200.31
Todd et al.cceveveenen 395/712
Beydaocooeovieiiinnin 395/712
Rakavy et al. . 395/200.62
Davies et al. 709/218
Forman et al. 709/224

U.S. Patent Aug. 13,2002 Sheet 1 of 8
USER
MACHINE
APPLICATION(S)

L)

RUN-TIME
ENVIROMENT

PERSISTANT

AGE

NT

\

US 6,434,532 B2

FIG._1

N

N

SERVER

RDBMS

RULES
ENGINE

Preferred Customer Enroliment

Fopland Systems would like to invite you to participate in our free
preferred customer program. In theis program, you will be offered
updates to your software at no charge, special prices on future
versions, and be registered for our various promotions and
sweepstakes. We will maintain personalized information about your
and use use of our product in order to give you individualized service.

If you would like to be enrolled, please hit enter or press the ‘1 Accept’
button, otherwise press the ‘| Decline’ button.

| Accept

| Decline

FIG._2

US 6,434,532 B2

Sheet 2 of 8

Aug. 13, 2002

U.S. Patent

108$8001d91d
a|i4purWIWOD

.| 1abeuepy dnjeig sjowsy

|

laBeuep ayoen
puy uibn|4 ‘Ja|npayos

|

weishs ol Juaby Juepisey
Ansibay Y
A A A A |
abeloig e AN SRS M R 1 1dv uibnig
T D T T T T N S A
! ubn|gq
" uibnig uibn|d uibn|d 108S920.d
! 18y Aamng abessop pUBWIWOY
" \
Jo|ddy |aued " uibnid
[01uo)) Jusby _ ¥0OH é
1
! 1 ssao01d Juaby
(ol 5T ¥ | 500N _|7Dco_ﬁo__%<zm__o
s T S e——

US 6,434,532 B2

Sheet 3 of 8

Aug. 13, 2002

U.S. Patent

al wal)

(uonewloyu|
aleAlld)
| 18AIBS JOPUBA

ajl sl

(uonreurioju)
8leAlld)
| 1oAI9S IOpUBA

_ qi weby _
<

(Bung ‘buioel])
Janes Jeplaoid
ABojouyde]

v "Oold

i

uoneolddy

oo

uaby

US 6,434,532 B2

Sheet 4 of 8

Aug. 13, 2002

U.S. Patent

CENE |

v0C/E0 @ouejeg Buipuz FOTELLL

E@llm 1817 Junoooy []

aouejeg jua.uny

S5 QI ISIA

1515848 usas Buiied |Ig a3 0) 5|qe|IRAR $328UD
WIOJEND JNOGE S10W LIRA| 0] 8)IS Gan 1IN0 Jisia ‘ainyea) Buum
32847 $LEHIINE Yliv 20UaLads Swos pey aanod JeY) MON

E LB/SVE T

(2

Bunjoay)

add} aeq

hvﬁ%ﬁ@

13j)0 %08y

ssosppps

J

BuIyoay? s}o9Yy] LM ==

o 43

dgH mopuly, sodey spf] semEe] P39l

US 6,434,532 B2

Sheet 5 of 8

Aug. 13, 2002

U.S. Patent

9 Old

3U0Z JaUIB| QDDD_ __

_

0
2

ojuj pue

sagjueienyy

AIUUEL4 [EIURUIY UIHIIND ¢ axnjag uaydnd 9 uIYNY

AUoW IADS pUD*’
saoupbuy (puosiad ok aSoupw o3 Jassba 1 sy | [SIVI0IdS |

ﬂ speoumog xel N\, $souisng __«Em/ voptredaay xa._/ BJURUL [RUCSISY W E

satjddng pue $321A49G “‘94BMIJOS FI2URUI [BUOSIIG

ua1InT)

1660-¥IL
008-1

43090 JHOR4

SIINP OIS 0 Ajise 4 I duio) v .
arojguaspIng)

4

oleag auoH ysaygay doig pIRAAID Joeg —‘

ssalppy

« SAOAEY of wmaly pF 9] ﬂ

B ¥ & e =

1210]dX J 12WI3)U| YOSTID - 31015 uayaIng ay | [

£

Go|s1avl

24640091
29(ELL9L Is1zea uaas Duided |j1g axew 0] 3|gejirAR SyJayD

. WQJEND JN0GR 20U LIE3| 0] 3315 gam 10 JIEA “ainpeay Gugim
¢8| kel 8L YIBYT 3,U3HANE] Y 30USNSdR3 SIU0S PRY 3A MDA JBY) MO N
LLIBFZ 9L

S EE]

13J)0 ¥oay))

[~

aueeg 15

«podsy suondpg ling

US 6,434,532 B2

Sheet 6 of 8

Aug. 13, 2002

U.S. Patent

Z "Old

=

—
F

w

lign dw abueya oy BLiob st sy |

MOJ3T FARY AR MOA SJLISWILDT AR 19)US 35Ea)d

paysiessip digp, O
paysnessip jpYMaWos
st Q

PaSIES [EYMIWDS (3)
paysies diap, O

24215 A £7'5 1® /6/07/8 PABPON (UG Y auiuo Burjue g

I

mnp 210

26712/ 40 3® 233p UoRoRSURI |

daaing Durjue g awjug unju)

sbuine g
— GjelUg ~ Uy JITURIU |
30URRg AU suoloesUR; | unoxo
jell-3 _ slafEuel | sjuawAe 4 _ suonoesuer]
— jueg obie§ sjjam
AU o
M0 o ‘Ugljh]isu] |IoLeL 4

2415 g/

12jua7) Juawsaau] 3 bunjueg auug ==

US 6,434,532 B2

Sheet 7 of 8

Aug. 13, 2002

U.S. Patent

SI0p UEan

8 "Oid

"sajhy we) Buiyeaig-aie| asay) JO JUNDJIDR 34e) O}

uayaIn A jo Adoo inod ajepdn o) nod abeinoaua o) a3yl PR JInu)|
-Buiuue|d raueu jguosiad inod op nod dew sy 10a)e dewl jey)
uonelsiba| buidaars passed ssaibuo] 51 9yl LGB L " 1snBy ug

J=2=0g)

M

ajepd(me] ke |

1e6png Ajyauop

f1062122 Ag dlewwns asuads<a pue awoou|
MO 4 L SED

0005%- H PILIXEL
00ass- 4 pRJixep
Wnony JJ AI0BIE] Ty

| e e

yoaysied S TUayd geiclst
yoayaied S TURYD 9B
XB| |R13pa 4

3590 wnN Ty

E3]

=

T B =

67171 wor [

2)2p O} _mﬁH_

3R] oday

paziows

ssauEng

JMaUEIA]

— QWoH

oday ajeas)) _

US 6,434,532 B2

Sheet 8 of 8

Aug. 13, 2002

U.S. Patent

6 "OlId

SNNAHC NHOMIIN H3HD1IATA HHOSHNK

aAoway

f10B31e7)
Guneaday 14 _ Burqaay)
saafed 3 m_ aarfel OFVAETTAM
273 dvsy srgAisalEq Mm
Py | ey LB/ENDL]
B0EE0F BouRR g sajsibay _” mc_,»_um_;u. JUN0D0Y B LB/ LICh
- AR 4 B ZB/F/0L
e - 3 — siaffuel| — sjuawfiey SUoNaRsURIT paipuy| 89y LoCFOL
- CREEIR L LB/2/0L
woojg| 4 9gr B/2/01
d7ed|¢ SBF £6/C/0L
“guun oF pwndp 4 ey 2672701
vespn 4 cay LB/E/01L
paoedl 4 zZer| Bf2/0L
posie L [4 LAy 672701
= | I IR0
WEodeq] 0] safe Wwhiy 2|
Tiaplieg o Upul 2R
juegq :obiey sjam - Buryoayn) =<

US 6,434,532 B2

1

INTERACTIVE CUSTOMER SUPPORT FOR
COMPUTER PROGRAMS USING NETWORK
CONNECTION OF USER MACHINE

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to customer support for
computer programs.

2. State of the Art

Customer support is service that computer and software
manufacturers (as well as third-party service companies)
offer to customers. In the case of an Independent Software
Vendor (ISV), customer support may include a phone num-
ber for customer to call for advice and trouble-shooting, a
bulletin-board system staffed by service engineers, or a
forum within an on-line service. Software updates may be
downloaded that correct known bugs. Internet-based cus-
tomer support, problem resolution and call tracking has been
recently introduced.

Customer support may be mutually beneficial to both the
customer and an ISV. Customer support enables the cus-
tomer to get the most out of a software product. At the same
time, customer support fosters a relationship between an ISV
and a customer and provides “up-sale” opportunities for the
ISV.

In the past, however, customer support has been initiated
by the customer on a hit-or-miss basis. Ironically, when
things go most smoothly for the customer, indicating a job
well-done on the part of the ISV, the customer is least likely
to initiate a customer support relationship, and up-sale
opportunities are most likely to be missed. Furthermore,
customer support has traditionally been human-intensive.
Getting through to a service engineer may be difficult
enough in itself, but then the customer must spend a sig-
nificant amount of time acquainting the service engineer
with the customer’s individual needs and circumstances. A
small “dose™ of support is then given. The next occasion for
interaction is likely to be much the same. No opportunity
exists for broad-based, systematic, individualized customer
support.

U.S. Pat. No. 5,406,269 describes a customer intelligence
system in which surreptitious telephone reporting calls are
made by modem from remote equipment to one or more
monitoring sites. Various uses for information gathered in
this manner are proposed, including determining those cus-
tomers who are ready for upgrades, showing potential cus-
tomers usage statistics pertaining to the installed base, etc.
Communications is one-way, in the uplink direction only.
Furthermore, surreptitiousness greatly restricts the manner
in which the system may be used and raises many issues of
privacy and intrusiveness.

SUMMARY OF THE INVENTION

The present invention, generally speaking, provides for
broad-based, systematic, individualized, interactive cus-
tomer software support through a two-way, voluntary auto-
mated exchange of information between a software agent
installed on a customer’s machine and a server machine via
a wide area computer network, e.g., the Internet. Commu-
nication between the agent and the server is optimized to be
unobtrusive or transparent, using spare bandwidth of inter-
mittent Internet connections, for example. The agent is
software non-specific and may be instructed to operate with
respect to any arbitrary software program, and may further
be instructed at various different times to operate with

10

15

20

25

30

35

45

50

55

60

65

2

respect to various different software programs, including
multiple different software programs on a single machine.
The agent, with the user’s informed consent, gathers activity
information about the operations of the software program(s)
and uploads this information to a particular server machine
within a distributed server machine architecture, where it is
stored in a database on a per-software-copy basis. A rules
engine may cause instructions carrying a message targeted
specifically toward the customer (based on the activity
information) to be downloaded to the agent. Based on these
instructions, the agent may take any of various actions, such
as present a survey, present an advertisement, send an
upgrade notice, present a limited-time offer, deliver indi-
vidualized marketing messages, offer goods for sale and
fulfill the commercial transaction, install an upgrade or bug
fix for either an application or the agent itself, etc. Message
presentation to the customer may be timed (e.g., delayed
from the time of download) to achieve maximum impact.
Timing may be relative to individual program menu selec-
tions. For example, a message relating to a particular prod-
uct feature may be presented just after that feature has been
used. The agent may be instructed to operate with additional
applications, including applications shipped prior to the
existence of the agent. Exemplary uses include marketing,
sales, customer registration, technical support, market
research, customer surveys, usage monitoring, software
testing, in-product advertising, etc.

BRIEF DESCRIPTION OF THE DRAWING

The present invention may be further understood from the
following description in conjunction with the appended
drawing. In the drawing:

FIG. 1 is a generalized block diagram of the present
system,

FIG. 2 is an illustration of a preferred customer enroll-
ment screen display;

FIG. 3 is a more detailed block diagram of the agent of
FIG. 1;

FIG. 4 is a diagram illustrating a distributed server
architecture that may be used in the system;

FIG. 5 is an illustration of a screen display in which the
time and place of message delivery is controlled;

FIG. 6 is an illustration of a screen display resulting from
the user clicking through during display of the screen
display of FIG. §;

FIG. 7 is an illustration of a screen display in which the
message is a survey;

FIG. 8 is an illustration of a screen display in which the
message relates to a software update; and

FIG. 9 is an illustration of a screen display in which the
message is a banner advertisement.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Referring now to FIG. 1, the general architecture of the
present system will be described. A user machine is assumed
to include a run-time environment, provided by an operating
system, a Web browser or the like, and to be running one or
more computer programs. The computer programs may be
software applications, system software or embedded com-
puter programs. Systematic, individualized, interactive cus-
tomer software support is made possible by equipping the
user machine with a persistent client, or agent, that engages
in two-way communication with a server. The agent may be
installed concurrently with an application, may be pre-

US 6,434,532 B2

3

loaded on the user’s machine, may be separately installed
from a disk or download, etc. The connection between the
agent and the server is a virtual connection, i.e., a connection
that time-shares a physical communications channel with
other communications. In an exemplary embodiment, the
virtual connection uses spare bandwidth of intermittent
Internet connections to communicate with the server. The
agent can and typically does interact with the application
without a concurrent Internet connection.

Communications between the agent and the server are
voluntary. In an exemplary embodiment, when the agent is
first activated on behalf of a particular application, it dis-
plays to the user a preferred customer enrollment screen
display such as that of FIG. 2. By clicking on the appropriate
button, the user may accept or decline to participate in the
preferred customer program. If the customer accepts, then
the customer enters into an invited relationship with the
software vendor and agrees to the software vendor main-
taining personalized information about the configuration and
use of the application in order to provide individualized
service.

Communications between the agent and the server are
also two-way. In the uplink direction, the agent communi-
cates control, configuration and usage information, registra-
tion information, survey information, etc. In the downlink
direction, the server communicates non-executable content,
executable content, or both, including control information,
agent updates, etc. Separate servers may be responsible for
delivering non-executable content and executable content,
as described more fully hereinafter. Non-executable content
may include tips, offers, advertisements, surveys, etc. Note
that non-executable content may nevertheless be active, i.c.,
contain HTTP links enabling the user to “click through™ to
related Web sites. Executable content may relate to the
application or to the agent or both. Executable content
related to the application may include updates, bug fixes,
additional code modules, etc. Executable content related to
the agent allows the agent to be transparently upgraded with
new capabilities in the field, avoiding the potential problem
of agent obsolescence.

Referring to FIG. 3, a detailed block diagram of the agent
is shown.

In an exemplary embodiment, the agent follows a plug-in
architecture. The agent process therefore includes a resident
agent and various plug-ins that interface to the resident agent
through a plug-in API. In an exemplary embodiment, the
plug-ins include a command processor plug-in, a message
plug-in, a survey plug-in, an Inet plug-in that handles virtual
connections to the Internet, and a hook plug-in. The message
plug-in, survey plug-in, and possibly other plug-ins are
capable of taking actions within the process and User
Interface (UI) space of the client applications. Other plug-ins
may be included with the agent or added to the agent by
download. If a plug-in needs the assistance of another
plug-in, the agent will pass parameters transparently to the
target plug-in. Persistent storage is provided for the plug-ins
as well as for the resident agent, e.g., within the registry file
system.

The modularity resulting from plug-in architecture of the
agent is important from the standpoint of allowing for
user-transparent operation. The core agent and the plug-ins
are all small modules that are easily downloadable. The time
needed to download a module is typically only a few
seconds.

10

15

20

25

45

50

60

65

4

Core tasks of the agent include the following:
1. Manage plug-ins and inter-plug-in communication.

2. Download content (command files) and determine an
appropriate command interpreter for handling the com-
mand files. Retrieve the command interpreter plug-in
from the server and invoke it with the downloaded
command file.

3. Maintain state (e.g., the current command file) to
survive system crashes and restarts. The operating
system registry may be used for persistent storage of
state information including the configurations of the
plug-ins, the status of events and the registered client
applications.

4. Monitor the system Internet connection and schedule
uploads and downloads.

5. Track target applications and determine their usage.
From this information and the command file data,
schedule actions to be taken in the target applications
user interface (UT) space through the plug-in interface.

6. Change its level and type of activity, including becom-
ing inactive in response to a server.

The agent is capable of interacting with software appli-
cations in all respects without modification of the applica-
tion itself. In particular, a small system hook (e.g., a DLL)
is inserted into the windows message processing loop. Using
data provided by the agent, the system hook determines if
any relevant actions are happening within a monitored
application and if so, passes this information off asynchro-
nously to the hook plug-in. The system hook is designed to
not degrade the user’s system performance or application
performance. More particularly, in an exemplary
embodiment, the agent when it first launches loads the hook
plug-in, which starts execution of a separate thread. This
thread interacts with the system hook and is responsible for
selecting messages of interest. The separate thread ensures
that processing of the messages of the client application are
not noticeably slowed down. Note that, to prevent recursion
in the message processing, the system hook ignores any
messages related to the agent itself.

The Inet plug-in is responsible for handling all Internet
traffic. In an exemplary embodiment, it supports various
types of Internet transactions, including registering an agent
with the server and obtaining a user ID, retrieving a com-
mand file using the user ID, uploading data to the server, and
downloading resources from the server. Data may be
exchanged using POST and GET commands, for example,
as in the HTTP1.1 protocol. The Inet plug-in is designed to
gracefully fail if any transaction is not completed across the
Internet.

The command processor plug-in is responsible for con-
verting the command file into tangible actions. For example,
it scans the command file and schedules all resource down-
loads required by the command file, expands any macros,
and generates a clean version of the command file. It then
processes the command file, merges it with existing com-
mand files, removes all completed events from the command
file, and schedules all events and actions to be taken by the
agent. Finally, it marks the command file as active in
persistent storage and uploads a command line status update
that allows the server to track the execution of events in the
client application.

An agent control panel applet enables user interaction
with the agent to control prospective operation of the agent,
although typically the user will not have occasion to use the
control panel. As described previously, the user may accept
or decline the invitation to become a preferred customer. The

US 6,434,532 B2

5

user may be provided with additional control beyond this
initial decision. For example, the user may choose at a later
time to modify the degree of interaction, the type or amount
of information transmitted, or withdraw entirely from the
preferred customer program and discontinue all communi-
cations between the agent and the server. The user may wish
instead to continue uplink operations (e.g., monitoring by
the agent to facilitate conventional kinds of customer
service) but to discontinue downlink operations.
Alternatively, the user may wish to continue uplink opera-
tions and a limited subset of downlink operations, e.g.,
upgrade notification. Various other options may be provided.

In an exemplary embodiment, the resident agent includes
a scheduler/manager, a remote dialup monitor, and a com-
mand file pre-processor. The resident agent also includes a
client map, an event map and a plug-in map. The resident
agent is responsible for dynamically maintaining the con-
figuration and status of active plug-ins, the registered client
applications and the events working on the client applica-
tions. A command queue contains actual event information
and is processed upon each agent start. In an exemplary
embodiment, the agent is started by a machine start table
within the registry of the operating system.

The scheduler/manager is responsible for establishing
periodic Internet connections with the server, through the
Inet plug-in. If a connection becomes available, each client
object is allowed bandwidth to service the client’s needs.
Subsequently, all pending POST operations are processed.
The scheduler/manager can be invoked either via an event
driven method, in the case of dialup Internet access, or at
periodic intervals in the case of direct (or proxied) LAN-
based Internet access. In the case of dialup access, different
dialup access methods may be used depending on the
software configuration of the user machine. The remote
dialup monitor determines which dialup access method is
used and establishment of an Internet connection is detected
accordingly.

The client map, event map and plug-in map together
operate to establish “client channels” though which interac-
tion between the clients and the server occurs. The client
map consists of one or more client objects. At a minimum,
a privileged client object is present that is allowed to add
clients to and remove agents from the client map and to add
agents to and remove agents from the plug-in map. All other
client channels can only be used to schedule events and
direct the agent to download content from a server. A client
object within the client map has a corresponding event
object within the event map and a corresponding plug-in
object within the plug-in map. The event map in combina-
tion with the client map causes user interactions in the client
applications UI space.

Note that preferred support for copies of applications
already in the field can be added simply by causing the agent
to download client objects for those applications. A client
object (or “affinity module”) contains information that
allows the system hook to recognize events from a particular
application.

The agent checks in with the server when a check-in
interval for the application has elapsed. The agent may
receive back a command file from the server, which the
agent then interprets. The interpretation of the command file
may cause the agent to fetch resources from the server
and/or place information back onto it. The agent may also be
instructed to check-in for another command file. The privi-
leged client is also considered an application for the agent.
Therefore the agent checks in with the appropriate server on
a check-in interval separate from the check-in intervals of

10

15

20

25

30

35

40

45

50

55

60

65

6

other applications. Also, an application’s command file may
cause the privileged client to check in, or vice versa.

When the agent has acquired the resources and commands
from the server to actually do some work, it can be instructed
to immediately display appropriate messages to the user, or
(more commonly) to wait until the target application is
running, and work in the context of the application. The
agent converts system event data into tangible actions events
for the attached plug-ins, with messages appearing to the
user as coming from the vendor, within the application’s
screen window and only while the application is running.
There results a sense of connectedness and trust between the
customer and the vendor. A typical sequence of events is as
follows:

1. The system hook determines that a new application has

launched or gotten the user’s focus.

2. The agent queries its client objects to see if the
application is a client. If it is not a client, the agent
remains dormant.

3. A valid client with user input will cause the agent to
instruct the system hook to start detailed monitoring of
the application and route selected application messages
through the hook plug-in.

4. The hook plug-in will reflect the message asynchro-
nously to the agent, which will catalog the events under
the current user’s name.

5. The agent queries its client event map to look for a
match.

6. If a match exists, the event is executed, which could
include invoking a plug-in to undertake action in the
application’s UI space. If visible content is shown in
the application’s Ul space, the client application is
temporarily disabled and cannot receive user focus.

7. If any uploadable content is generated during this
event, it is passed to the Inet plug-in, which will either
send it or schedule it to be sent the next time bandwidth
is available.

8. After completion of the event, the user focus is set back
to the client application.

9. The agent returns to Step 4 above until the client
application loses focus. When the client application
loses focus, the agent transfers any client application-
related data to persistent storage, at which point the
agent reverts to Step 1 above.

Having described the structure and function of the agent,

the server will now be described.

The essential job of the server is the delivery of an
appropriate command file to particular agent. The command
files in the agent determine the action that the agent is going
to take—which of the various kinds of activities it will carry
out, at what time, with respect to what user operation, etc.
The server maintains a record for every single user of an
application. When the agent working for one of its user’s
connects to the server, it consults a table of rules that
determines which, if any, of the potential command files that
the server has for that application are appropriate for that
agent. Those rules are predicates that are based on all the
data in the database relative to that user.

An example of a rule might be “If installation of this
application took place 60 or more days ago, send Command
File A,” which causes the agent to perform some action,
“and if installation took place less than 60 days ago, send
Command File B,” which takes some other action. The two
actions would differ with respect to the degree of experience
that particular user has with the program. For example, in the
case where an upgrade has become available, a publisher

US 6,434,532 B2

7

may choose to send one upgrade message to experienced
users, more appropriate to their experience level, and
another upgrade message to less experienced users, more
appropriate to their experience level. The determination of
experience level may be based, for example, on the time
elapsed since installation.

The server applies rules that have been created in a table
sequentially to determine which if any of those rules are true
for a particular agent that is querying the server at a
particular point in time. Upon discovering that one or more
of those rules “fires,” i.e. is true, then the corresponding one
or more command files are downloaded to the agent. The
publisher therefore enjoys very “fine-grain” control of the
activities of an agent based on the attributes of that agent.
Very sharp targeting results in which particular information
is sent to particular agent based its characteristics and its
history.

As may be appreciated from the foregoing description, the
server has two different types of responsibilities. One func-
tion of the server is to maintain the agent. Operations to
maintain the agent occur through the control channel
described previously. Another function of the server is to
provide customer support for specific client applications.
These two distinct functions can be combined on one
physical server machine or on multiple physical server
machines. More preferably, these two functions are
separated, with agent maintenance being handled by a
technology provider server and customer support being
handled by a collection of software vendor servers. In
general, executable content is provided from the technology
provider server across the control channel and non-
executable content is exchanged with software vendor serv-
ers across other channels as shown in FIG. 4. In this manner,
executable content may be assured to be virus-free. Also,
private vendor-customer information may be passed directly
to the vendor without being passed through a third party. For
tracing and billing purposes, the privileged client periodi-
cally connects to the technology provider server and informs
it of activities of the agent on behalf of various client
applications.

Identifiers are allocated to support the foregoing separa-
tion of functions. In particular, the agent when it is first
activated seeks a connection opportunity and, when a con-
nection is established, obtains an agent ID from the tech-
nology provider server through the control channel. At the
same time or at a later time, the agent receives from the
server a command file instructing the agent to look for a
particular application. If that application is found installed
on the user’s system, a client ID is obtained for that copy of
the application. Only the technology provider server need be
aware of the correspondence between agent IDs and client
IDs. Transactions between the agent and the vendor server
use only the client ID.

At a vendor server, a Relational Database Management
System (RDBMS) maintains a per-client-copy database of
information uploaded from various instances of an applica-
tion. In an exemplary embodiment, the agent collects
numerical counts for each menu bar item in a client appli-
cation. The vendor may determine from the database how
often the file:print command has been used, for example.
The RDBMS includes a rules engine. Business rules are
established governing the actions to be taken in relation to
a particular copy of the application depending upon the data
stored for that application. When action is to be taken, a
command file is prepared and transferred to the agent.

Note that the system has the ability to precisely target the
moment a message dialog appears in a client application.

10

15

20

25

30

35

40

45

50

55

60

65

8

The vendor can pick an operation from among a menu
hierarchy of the application, a time delay, and a number of
times to repeat the operation until it is completed with a
click-through or other affirmative response. The system also
has the ability to determine who among the vendors installed
base will see a particular message. Criteria can be based on
demographics, responses to past offers, responses to past
surveys, usage information, time since the application was
installed, even random selection. Any information in the
database can be used to determine who gets a particular
message.

The following examples illustrate possible actions of the
server triggered based on data stored within the database:

1. Send all users a message before or after use of a
particular feature after that feature has been used a
specified number of times (FIG. 5). The message may
include an HTTP link, allowing for click-through (FIG.
6).

2. Present a survey to all users after a specified time has
passed or a specified level of usage has been achieved
(FIG. 7).

3. Present an update message to all users at next use of the
application or a particular feature of the application
(FIG. 8).

4. Present a banner ad to each user upon application start
up, with the banner ad being chosen based on an ad
presentation history for that user (FIG. 9).

Preferably, a Web-based administration tool is provided to
allow business rules to be set up and changed through a
familiar Web-form interface. Using the Web-form interface,
the vendor can, for example, define a survey, to whom the
survey should be presented, and how it is to be timed within
the vendor’s application. After a survey is initiated, the
vendor can go to a Web site and view the progress of the
survey, including the responses in real time as they come in.

The following Appendix shows a sample command file. It
runs a plug-in (pil) during the vendor’s application and
returns the result tot he server. Once this is done, it does a
check-in so that the server can send follow-up commands. It
also retrieves some usage information from the registry
immediately.

APPENDIX

Here is a sample command file. It runs a plugin (pil) during the
vendor’s app and returns the result to the server. Once this is done,
it does a check-in so that the server can send follow-up commands. It
also retrieves some usage information from the registry immediately:
[cilhttp:/fullcircle-sys.com/cil.fep[flags]“-p”

[eventmanager Jhttp://fullcircle-sys.com/acem.fep

[define Jplugname[=]http://fullcircle-sys.com/ad/pil.fep

[define Jplugi[=]http://fullcircle-sys.com/ad/pili?UID,$TID

[define Jplugo[=]http://fullcircle-sys.com/ad/pilo?$UID,$TID

[define Jsoon[=]31-Dec-1997

[transid]12345

[cobegin]

[get]$plugname

[get]$plugi-

[coend]

[wait]app__running // Really should be on line with plugin command
[plugin]$plugname| command [1[input[$plugi[output Jplugo[expires]soon
[postlplugo

[delete]plugo

[pause]15

[checkin]

[define Jusage[=]http://fullcircle-sys.com/ad/usage1?$UID,$TID
[transid]9876

US 6,434,532 B2

9

APPENDIX-continued

[copyl$usage[=]reg://some.path.in.the.registry
[post]$usage
Here is another sample command file:

t10040001.fcc
[cilhttp:/fel.previewsoft.com/resources/feemd32.fep[Function]
80000[Version]0102[UnLoad]1[NameJfccommand01[command]1[flags]-p
// Last Updated 11/10/97 by SG
[eventmanager Jhttp://fcl.previewsoft.com/acem.fep
/DEFINES
I
[define Jp6[=]http://fcl.previewsoft.com/resources/fesurvey32.fep[Functi
on]60000[Version]0105[UnLoad]1[Name JFCMultipleDialogPlugin
[define Jplugi[=]http://fcl.previewsoft.com/resources/INTUIT
LOGO.BMP
// trigger on backup to offer customer a zip drive
[define]qziq[=]http://fcl.previewsoft.com/resources/q__zip.fer
I

[define Jplugo[=]http://fcl.previewsoft.com/scripts/fulleircle_ scripts/f
c_return_ data01.idc?#UID&#TID

[define [soon[=]31-Dec-1997

[define Jusage[=]http://fcl.previewsoft.com/scripts/fulleircle_ scripts/f
c_ return_ data01.idc?#UID&#TID

/TRANSACTIONS

I

[transid]10040001

[cobegin]

[get]$p6

[get]$plugi

[get]$qzip

[coend]

// use backup menu to offer a promotion with ITomega for a zip drive
[waitJapp__running[menucmd]7010[delay]0[skip [0[run]9[plugin |$p6
[command]1[input]$qzip[output]$plugofexpires]$soon

1

It will be appreciated by those of ordinary skill in the art
that the invention can be embodied in other specific forms
without departing from the spirit or essential character
thereof. The presently disclosed embodiments are therefore
considered in all respects to be illustrative and not restric-
tive. The scope of the invention is indicated by the appended
claims rather than the foregoing description, and all changes
which come within the meaning and range of equivalents
thereof are intended to be embraced therein.

What is claimed is:

1. A method of providing individualized, interactive cus-
tomer support wherein a user machine is at least intermit-
tently connected to a wide area computer network and
receives content over the wide area computer network, the
method comprising the steps of:

assigning a software agent to monitor a selected computer

program, wherein the software agent is separate and
independent from the selected computer program;

the agent identifying a computer program running on the

user machine as the selected computer program;
the agent monitoring operation of the computer program,
including user inputs to the computer program;

transparent to the user, the agent communicating moni-
tored information through the wide area computer
network to a remote server; and

at runtime, the agent receiving from the server content

affecting operation of the computer program.

2. The method of claim 1, comprising the further step of
presenting content received from the server within a user
interface space of the computer program.

3. The method of claim 2, wherein the content is presented
in timed relation to a monitored event.

4. The method of claim 1, comprising the further step of
presenting the user with an option to accept or decline the
customer support, and inputting a response of the user.

10

15

20

25

30

40

45

50

55

60

65

10

5. The method of claim 1, wherein monitoring comprises
gathering usage data with respect to the computer program.

6. The method of claim 5, wherein the usage data includes
numerical counts for each of multiple menu bar items.

7. The method of claim 5, comprising the further steps of:

the server accumulating usage data for each of multiple

computer programs; and

the server determining content to be received for a par-

ticular computer program based on accumulated usage
data for that computer program.

8. The method of claim 7, wherein the server performs
steps comprising for each of multiple copies of a computer
program:

receiving an identifier identifying a copy of a computer

program; and

receiving and storing in a database information concern-

ing usage of that copy of the computer program.

9. The method of claim 8, wherein the server performs
steps comprising:

receiving an identifier identifying a copy of a computer

program;

evaluating each of multiple rules stored in a database to

determine which rules are applicable to that copy of the
computer program; and

sending to an agent for that copy of the computer program

a corresponding command for each rule determined to
be applicable to that copy of the computer program.

10. The method of claim 7, comprising the further step of
using a Web-based administration tool to set up rules deter-
mining what content is to be received by what computer
program based on accumulated usage date.

11. The method of claim 7, wherein the content is non-
executable content.

12. The method of claim 11, wherein the non-executable
content is active content containing at least one hypertext
link.

13. The method of claim 11, wherein the non-executable
content is one of the following: an advertisement, a promo-
tional offer, a survey, and a program usage hint.

14. The method of claim 7, wherein the content is
executable content.

15. The method of claim 14, wherein the executable
content is one of the following: a bug fix, an agent plug-in,
a replacement agent, and a module or plug-in for the
computer program.

16. The method of claim 1, wherein communicating
comprises detecting a connection to the wide area computer
network and using a small fractional portion of bandwidth
available to the connection.

17. The method of claim 1, wherein the monitoring,
communicating and receiving steps are performed by an
agent running on the user machine.

18. The method of claim 17, wherein the computer
program and the agent communicate only indirectly through
messaging facilities of a run-time environment of the com-
puter program.

19. The method of claim 18, comprising the further steps
of storing state information for the agent within persistent
storage.

20. The method of claim 19, wherein an operating system
registry is used for persistent storage.

21. The method of claim 18, wherein the agent operates
in behalf of multiple distinct and separate computer pro-
grams.

22. The method of claim 18, wherein the agent comprises
a privileged client object and at least one other client object,

US 6,434,532 B2

11

wherein communicating comprises the privileged client
object communicating with a first server across a control
channel.

23. The method of claim 22, wherein communicating
comprises the other client object communicating with a
second server across a channel other than said control
channel.

24. A system for providing individualized, interactive
customer support wherein a user machine is at least inter-
mittently connected to a wide area computer network and
receives content over the wide area computer network,
comprising:

a server connected to the wide area computer network;

and

an agent running on the user machine, comprising:

means for assigning the agent to monitor a selected
computer program,

means for identifying a computer program running on
the user machine as

the selected computer program;

means for monitoring operation of a computer program
running on the user

machine, including user inputs to the computer pro-
gram;

means for, transparent to the user, communicating
monitored information

through the wide area computer network to a remote
server; and

10

15

20

25

12

means, ar runtime, receiving from the server content
affecting operation
of the computer program;

wherein the agent is separate and independent from the

selected computer program.

25. The apparatus of claim 24, further comprising means
for storing in persistent storage state information for the
agent.

26. The apparatus of claim 24, wherein said means for
monitoring comprises an operating system hook.

27. The apparatus of claim 24, wherein the agent follows
a plug-in architecture.

28. The apparatus of claim 27, wherein the wide area
computer network is the Internet, and a required plug-in of
the agent is an Internet plug-in for handling Internet traffic
between the agent and the server.

29. The apparatus of claim 24, wherein the agent com-
prises a plurality of code modules each of a size such that an
average download time of a code module is only a few
seconds.

30. The apparatus of claim 29, wherein the agent com-
prises a plurality of the following modules: an agent core
module, a command processing module, a message module,
a survey module, an Inet module, and a hook module.

