US 20020162053A1

a2 Patent Application Publication (o) Pub. No.: US 2002/0162053 Al

a9 United States

Os

43) Pub. Date: Oct. 31, 2002

(54) USER TRANSPARENT SOFTWARE
MALFUNCTION DETECTION AND
REPORTING

(76) Inventor: Ron van Os, Sunnyvale, CA (US)

Correspondence Address:

BURNS, DOANE, SWECKER & MATHIS,

L.L.P.

P.O. Box 1404

Alexandria, VA 22313-1404 (US)
(21) Appl. No.: 10/150,543
(22) Filed: May 17, 2002
Related U.S. Application Data

(63) Continuation of application No. 09/265,839, filed on
Mar. 10, 1999.

Publication Classification

(52) US.ClL oo 714/38

(7) ABSTRACT

The present invention, generally speaking, “instruments™ an
arbitrary software program, without changing the software
program, to automate malfunction detection and reporting.
Although users can be invited to enter a description of what
the user was doing prior to receiving the error, report
generation and transmission to a remote server can be fully
automatic and transparent to the user. In the case of beta
testing, therefore, a software developer is guaranteed to
receive all pertinent information about malfunctions of an
application without having to rely on “fallible humans” for
this information. The effectiveness of beta testing, in terms
of ultimately contributing to an improved product, is there-
fore greatly increased Various kinds of malfunctions may be
detected and reported, including an application “crashing,”

(51) Int. CL7 s H04B 1/74 becoming “hung,” etc.
SendMessageTimeout(... SMTO_ABORTIFHUNG ...)
Target Application ——
EXE DLL Check Alive Thread
- _~~‘_’/V
<+
DebugActiveProcess(...), WaitForDebugEvent(...)
4——\
Micro Debugger Thread
OCX .
SendMessage(...), PostMessage(...)
Application
Hook T ook Support Thread
BUG REPORT 7 v
FORM . > | AGENT
" 1 L
. d Event Lo
g%r?hp[isged Active Processes List TimeStamped Ev 9

Patent Application Publication Oct. 31,2002 Sheet 1 of 4 US 2002/0162053 A1

- SendMessageTimeout(... SMTO_ABORTIFHUNG ...)
Target Application ——
EXE DLL Check Alive Thread
- _w_———-/’
4+
|) DebugActiveProcess(...), WaitForDebugEvent(...)
4———\
Micro Debugger Thread
.OCX - -~
SendMessage(...). PostMessage...)
Application
Hook ‘—\/—tiook Support Thread
BUG REPORT l[vy
FORM « > | AGENT
- T L
Compressed : : TimeStamped Event Log
Crash Log Active Processes List

’“\". C‘:*'_" K

Patent Application Publication Oct. 31,2002 Sheet 2 of 4 US 2002/0162053 A1
CASHLOG EXAMPLE **

06:02:02-11/16/1998, CLIENT START, CLIENTID=2054

06:08:12-11/16/1998, WM_COMMAND, CMD=15

06:09:10-11/16/1998, LOADMODULE, C:\WIinNT\OFFICE\SPELL32.DLL @ 0xBF002323
06:10:07-11/16/1998, WM_COMMAND, CMD=17

06:10:07-11/16/1998, WM_COMMAND, CMD=22

06:10:08-11/16/1998, WM_COMMAND, CMD=17

06:10:12-11/16/1998, WM_COMMAND, CMD=27

06:11:07-11/16/1998, WM_COMMAND, CMD=1024

06:11:07-11/16/1998, WM_COMMAND, CMD=29

06:14:10-11/16/1998, UNLOADMODULE, SPELL32.DLL.

106:17:52-11/16/1998, WM_COMMAND, CMD=1025

06:19:47-11/16/1998, WM_COMMAND, CMD=27

06:19:48-11/16/1998, WM_COMMAND, CMD=32107

06:19:49-11/16/1998, LOADMODULE, C:\WINNT\system32\MSIDLE.DLL
06:19:49-11/16/1998, EXCEPTION, 0xC0000005: Access Violation @ 0x5F45C5B5,
MODULE: C:\WINNT\system32\MSVCRT.DLL

06:19:51-11/16/1998, CLIENT EXCEPTION LOG SAVED, CLIENTID=2054,
TRANSID=90123, AGENTID=11300

Fig. 2

Patent Application Publication Oct. 31,2002 Sheet 3 of 4 US 2002/0162053 A1

< BEGIN)

Y

FIND TARGET APPLICATION

v

CREATE MICRO DEBUGGER THREAD

v

REGISTER AS DEBUGGER
FOR THIS PROCESS

Y

INTERCEPT PROCESS

Y

HAVE OS ENUMERATE MODULES

Y

RESUME PROCESS

N

Y

IDENTIFY WHAT KIND,
MEMORY LOCATION

Y

IDENTIFY WHAT HAPPENED,
WHICH MODULE

Y

CREATE LOG

Y

TERMINATE PROCESS

Fig. 3

Patent Application Publication Oct. 31,2002 Sheet 4 of 4 US 2002/0162053 A1

C BEGIN)
Y

FIND TARGET APPLICATION

Y

CREATE CHECK ALIVE THREAD

v

SendMessageTimeout(...SMTO_ABORTIFHUNG...)

Y

WAIT FOR RESPONSE

RESPONSESY

CONFIRMATION DIALOG

Y

TERMINATE PROCESS

v

CREATE LOG
(END)

Fig. 4

US 2002/0162053 Al

USER TRANSPARENT SOFTWARE
MALFUNCTION DETECTION AND REPORTING

BACKGROUND OF THE INVENTION
[0001] 1. Field of the Invention

[0002] The present invention relates to software malfunc-
tion detection and reporting.

[0003] 2. State of the Art

[0004] Software malfunction detection and reporting tools
are known. One such tool is Microsoft’s “Dr. Watson.” Dr.
Watson is a debugging tool designed to provide software
programmers with detailed information on the internal state
of the Windows operating system when a Unhandled Appli-
cation Exception (UAE) occurs. Dr. Watson must be running
at the time a UAE occurs to extract the internal information
from the system.

[0005] Dr. Watson uses comparatively little memory and
does not affect the performance of Windows. A software
programmer therefore has no reason not to install Dr.
Watson, especially if a UAE has occurred before. After Dr.
Watson is installed, information is collected when a UAE
occurs and written to a special file (DRWATSON.LOG)
located in the Windows directory. In addition, a Dr. Watson
dialog box will appear, prompting the user to enter a
description of what the user was doing prior to receiving the
error. A developer may choose to start Dr. Watson automati-
cally each time Windows is started, thus allowing critical
information to be collected each time a UAE occurs. After
several UAEs have been logged, the log may, if desired, be
sent to a remote location for diagnosis.

[0006] Dr. Watson is a diagnostic tool, not a cure for a
problem. Having Dr. Watson will not prevent an error from
occurring, but the information in DRWATSON.LOG often
helps developers determine the cause of the error.

[0007] Another tool, the Microsoft Diagnostics (MSD)
program, is designed to assist Microsoft customers and
Product Support Services (PSS) technicians in solving prob-
lems with Microsoft products. MSD identifies system con-
figuration information such as the BIOS, video card type and
manufacturer, installed processor(s), I/O port status, operat-
ing system version, environment settings, hardware devices
attached, and additional software running concurrently with
MSD.

[0008] MSD is often used in conjunction with Dr. Watson
to provide information on hardware configurations and
UAEs. Error reports may be generated that include infor-
mation from both the MSD program and Dr. Watson.

[0009] As may be appreciated from the foregoing descrip-
tion, existing software malfunction detection and reporting
tools are targeted to software developers. Significant com-
puter expertise and manual interaction is required in order to
use these tools effectively. In particular, such tools are not
well suited for beta users. Although beta users are supposed
to report crashes and malfunctions, a beta user may expe-
rience a malfunction but, in the day-to-day rush of business,
fail to report it. A need exists for a software failure and
detection tool well suited for beta users such that a software
developer can obtain malfunction reports and diagnostic
information easily and reliably.

Oct. 31, 2002

SUMMARY OF THE INVENTION

[0010] The present invention, generally speaking, “instru-
ments” an arbitrary software program, without changing the
software program, to automate malfunction detection and
reporting. Although users can be invited to enter a descrip-
tion of what the user was doing prior to receiving the error,
report generation and transmission to a remote server can be
fully automatic and transparent to the user. In the case of
beta testing, therefore, a software developer is guaranteed to
receive all pertinent information about malfunctions of an
application without having to rely on “fallible humans” for
this information. The effectiveness of beta testing, in terms
of ultimately contributing to an improved product, is there-
fore greatly increased. Various kinds of malfunctions may be
detected and reported, including an application “crashing,”
becoming “hung,” etc.

BRIEF DESCRIPTION OF THE DRAWING

[0011] The present invention may be further understood
from the following description in conjunction with the
appended drawing. In the drawing:

[0012] FIG. 1 is a block diagram of a software malfunc-
tion detection and reporting system in accordance with an
exemplary embodiment of the invention;

[0013] FIG. 2 is an example of a log created by the
software agent of FIG. 1;

[0014] FIG. 3 is a flow chart illustrating operation of the
Micro Debugger thread of FIG. 1; and

[0015] FIG. 4 is a flow chart illustrating operation of the
Check Alive thread of FIG. 1.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

[0016] Referring now to FIG. 1, a block diagram is shown
of an automated malfunction detection and reporting system
in accordance with an exemplary embodiment of the present
invention. Communication of a malfunction report may be
accomplished in any of various different ways, for example
via a LAN connection, with data collection occuring inside
a corporation, via the Internet, of simply by means of the
generation of an ASCII report which is then inserted into an
email outbox. In accordance with one advantageous embodi-
ment, to be presently described, a user machine is assumed
to have installed software realizing a “polite agent” that
communicates messages of abbreviated length with a remote
server using a “virtual connection,” e.g., an “opportunistic”
Internet connection. Such a polite agent is described in U.S.
application Ser. No. (Attorney’s Docket No.
031994-026) filed , incorporated herein by reference.
The polite agent technology described in published Interna-
tional Patent Application WO 97/07656, also incorporated
herein by reference, may also be used with the present
invention.

[0017] The agent is provided with a list of active pro-
cesses, or “target applications, with which the agent is to
interact, e.g., to perform automated malfunction detection
and reporting. One such target application is shown in FIG.
1. As illustrated, a target application will typically include a
main body of executable code (.EXE), various Dynamic
Link Libraries (.DLL), various Custom Control and COM

US 2002/0162053 Al

objects ((OCX), etc. The terms EXE, DLL, OCX, etc., are
specific to the Window operating system. In the case of other
operating systems, other terminology is applied to similar
concepts. The invention may be applied in connection with
any operating system.

[0018] When a process is started on the user machine, the
agent “hooks” (installs code realizing an application hook
for) that process. The application hook then identifies the
process either as a process of interest, i.c., one of the agent’s
active processes, or as a process not of interest. In the latter
case, the application hook removes itself. The function of the
application hook is to intercept and filter messages from the
target application and communicate messages of interest to
the agent, which maintains a timestamped event log. The
application hook and the agent communicate through a hook
support thread using operating system messaging facilities,
e.g., in the case of the Windows operating system, Send-
Message(. . .) and PostMessage(. . .). For purposes of
malfunction detection and reporting, messages of interest
include menu selections, loading of a DLL, etc. These events
are timestamped by the agent and entered into the event log.

[0019] Note that multiple target application may be active
at the same time, in which case each target application would
have its own application hook, hook support thread and
timestamped event log.

[0020] The application hook allows relatively high-level
activity information concerning the target application to be
captured. Such activity information is readily intelligible to
the average software programmer, in contrast to the much
more arcane information gathered by known malfunction
detection and reporting tools, such as stack frames, pointers,
etc.

[0021] In addition to the application hook, two addition
threads are created on a per-application basis, a Micro
Debugger thread and a Check Alive thread.

[0022] The Micro Debugger thread is registered with the
operating system as the debugger for the target application
using the appropriate operating system call, e.g., DebugAc-
tiveProcess(. . .). This call waits until an exception occurs
in the target application and then returns control to the Micro
Debugger. The target application therefore runs under the
control of the Micro Debugger. The Micro Debugger is
notified by the operating system when a “crash” (UAE)
occurs. The Micro Debugger communicates this information
to the agent, performs cleanup for the target application, and
terminates the target application. The agent then solicits
additional information from the user concerning the mal-
function.

[0023] Check Alive is an optional feature that may be
specified when the instruction to monitor a particular appli-
cation is given. The purpose of the Check Alive thread is to
detect when the target application has hung, i.e., become
non-responsive to user input. The Check Alive performs this
function by repeatedly “pinging” the target application, i.c.,
send a message to the target application to see if the target
application responds. A timeout period is set for the message
such that if the target application does not respond within the
timeout period, control is returned to the Check Alive thread.
If Check Alive thread detects that the application is hung, it
notifies the agent, which then solicits confirmation and
additional information from the user.

Oct. 31, 2002

[0024] After the target application has either crashed or
becomes hung, the agent assembles and (optionally) com-
presses the “crash log” as part of a bug report form and
schedules the bug report form for automatic upload to the
server using “polite connection” methods or some other
connection. An example of a crash log is shown in FIG. 2.

[0025] Referring now to FIG. 3, operation of the Micro
Debugger thread will be described in greater detail. Once an
application hook has found a target application, a Micro
Debugger thread is created for that target application and
registered with the operation system as the debugger for the
target application process. The Micro Debugger then causes
execution of the process to be then interrupted while the
operating system enumerates modules that the process has
loaded. In the case of the Windows operating system, the
operating system identifies each module loaded by the target
application thread along with the memory location of that
module. When all of the modules have been enumerated, this
information is sent to the agent to be logged, and the target
application process is allowed to continue running. Any
modules loaded or unloaded thereafter will be detected by
the Micro Debugger and logged as described previously.

[0026] When an exception occurs, the operating system
calls the Micro Debugger, which determines what kind of
exception has occurred and where in memory the exception
occurred. The Micro Debugger also captures additional
context of the exception, e.g., what happened (divide by
zero, access violation, ete.) and in which module. The Micro
Debugger then sends this information to the agent to be
stored in the event log. Finally, the Micro Debugger termi-
nates the target application. Optionally, prior to terminating
the target application, the Micro Debugger may perform
cleanup for the target application. In order to do so, the
Micro Debugger will typically require some detailed knowl-
edge of the target application. Given such knowledge, the
Micro Debugger could, for example, save a user’s work
prior to terminating the target application such that the user’s
work is not lost.

[0027] Referring to FIG. 4, operation of the Check Alive
thread will be described in greater detail. Once an applica-
tion hook has found a target application, a Check Alive
thread is created for that target application. The Check Alive
thread then enters a loop in which the following actions are
performed. The Check Alive thread sends a message with
timeout to the target application. The timeout period may be,
for example, 5 seconds. The Check Alive thread then waits
for a response from the target application. If a response is
received within the timeout period, the Check Alive thread
waits for a period of time (e.g., about 15 seconds) before
sending another message with timeout. This manner of
operations continues for so long as the target application is
running and responsive.

[0028] 1If a response is not received from the target appli-
cation within the timeout period, either the Check Alive
thread or the agent attaches a dialog box to the application
window asking the user to confirm that the target application
has hung. If the user concurs, then the process is terminated.
The agent then creates a crash log and schedules it for
upload to the server as described previously.

[0029] Automatically collecting malfunction information
on the server without the need for user intervention greatly
facilitates the job of a software developer to find and fix

US 2002/0162053 Al

program bugs. A beta test coordinator, for example, may
remotely log onto the server and view malfunction infor-
mation. The beta test coordinator may find, for example, that
of 200 installed copies of a program, five copies have
crashed within a week’s time. Based on this information—
the reliability of which is assured—priorities may then be set
to resolve the problem.

[0030] It will be appreciated by those of ordinary skill in
the art that the invention can be embodied in other specific
forms without departing from the spirit or essential character
thereof. The presently disclosed embodiments are therefore
considered in all respects to be illustrative and not restric-
tive. The scope of the invention is indicated by the appended
claims rather than the foregoing description, and all changes
which come within the meaning and range of equivalents
thereof are intended to be embraced therein.

What is claimed is:
1. An automated method of software malfunction detec-
tion and reporting, comprising:

detecting a software malfunction;
capturing an execution context of the malfunction; and

automatically sending malfunction information including

the execution context to a remote server.

2. The method of claim 1, wherein the malfunction
information is automatically sent in a manner transparent to
a user of the software.

3. The method of claim 1, wherein the server is used by
a software developer to gather malfunction information
concerning a pre-release version of a product of the software
developer.

4. The method of claim 1, further comprising selectively
monitoring at least one software application.

5. The method of claim 4, wherein selectively monitoring
comprises:

inserting a hook into a thread as it begins execution;
using the hook to determine an identifier of the thread; and

comparing the identifier to a list of identifiers of threads

belonging to target software applications.

6. The method of claim 5, further comprising, depending
on results of the comparing step, either removing the hook
or allowing the hook to remain.

7. The method of claim 5, further comprising:

using the hook, logging user activity within an applica-
tion; and

including user activity information within the malfunction

information.

8. The method of claim 7, wherein the user activity
information includes information concerning which user
interface commands were selected.

9. The method of claim 8, wherein the user activity
information further includes information concerning when
such user interface commands were selected.

10. The method of claim 5, further comprising, for an
execution thread belonging to a target software application,

Oct. 31, 2002

creating a control thread and registering the control thread as
a debugger for the execution thread.

11. The method of claim 10, wherein the control thread
receives an unhandled application exception message and, in
response, captures the execution context of the execution
thread.

12. The method of claim 11, wherein the control thread,
in response to the unhandled application exception message,
terminates the execution thread.

13. The method of claim 12, wherein the control thread,
prior to terminating the execution thread, performs cleanup
for the execution thread.

14. The method of claim 5, further comprising, for an
execution thread belonging to a target software application,
creating a responsiveness monitoring thread.

15. The method of claim 14, wherein the responsiveness
monitoring thread periodically sends messages to the execu-
tion thread.

16. The method of claim 15, wherein the messages have
a timeout period specified.

17. The method of claim 16, wherein the responsiveness
monitoring thread, if it does not receive a reply from the
execution thread within the timeout period, performs at least
one of the following actions: displays to a user a dialog
within a user interface space of the execution thread asking
the user to confirm that the application has hung; captures
the execution context of the execution thread; performs
cleanup for the execution thread; and terminates the execu-
tion thread.

18. The method of claim 17, wherein, if the user confirms
that the application has hung, the responsiveness monitoring
thread terminates the execution thread.

19. A computer-readable medium containing a software
agent including program instructions for:

maintaining a list of active process threads;

when a new process thread is started, if it is a target
process thread belonging to a target application to be
monitored, hooking the target process thread and cre-
ating one or more detection threads for automatically
detecting events within and malfunction of the target
process thread; and

maintaining a log of events within the target process
thread.
20. The apparatus of claim 19, wherein the software agent
further includes program instructions for:

when a malfunction is detected by the one or more
detecting threads, creating a malfunction log including
the log of events and further including execution con-
text information of the target process thread; and

preparing the malfunction log to be sent to a remote

server.

21. The apparatus of claim 20, wherein the software agent
further includes program instructions for sending the mal-
function log in a manner transparent to a user of the
application.

