a9 United States

S 20010018673A

a2 Patent Application Publication (o) Pub. No.: US 2001/0018673 A1l

GOLDBAND et al.

(43) Pub. Date: Aug. 30, 2001

(54) INTERACTIVE CUSTOMER SUPPORT FOR
COMPUTER PROGRAMS USING NETWORK
CONNECTION OF USER MACHINE

(76) Inventors: STEVE GOLDBAND, PALO ALTO,
CA (US); RON VAN OS,
SUNNYVALE, CA (US); JEFFREY
BARTH, STANFORD, CA (US)
Correspondence Address:
BURNS DOANE SWECKER & MATHIS LLP
POST OFFICE BOX 1404
ALEXANDRIA, VA 22313-1404 (US)
(*) Notice: This is a publication of a continued pros-
ecution application (CPA) filed under 37
CFR 1.53(d).
(21) Appl. No.: 09/041,315
(22) Filed: Mar. 12, 1998
Publication Classification
(51) Int. CL7 .o, GO6F 17/60; GOGF 15/16;
GOGF 9/44
(52) US.ClL ., 705/27; 705/26; 709/202;
709/317
&) ABSTRACT

The present invention, generally speaking, provides for
broad-based, systematic, individualized, interactive cus-
tomer software support through a two-way, voluntary auto-
mated exchange of information between a software agent
installed on a customer’s machine and a server machine via

a wide area computer network, e.g., the Internet. Commu-
nication between the agent and the server is optimized to be
unobtrusive or transparent, using spare bandwidth of inter-
mittent Internet connections, for example. The agent is
software non-specific and may be instructed to operate with
respect to any arbitrary software program, and may further
be instructed at various different times to operate with
respect to various different software programs, including
multiple different software programs on a single machine.
The agent, with the user’s informed consent, gathers activity
information about the operations of the software program(s)
and uploads this information to a particular server machine
within a distributed server machine architecture, where it is
stored in a database on a per-software-copy basis. A rules
engine may cause instructions carrying a message targeted
specifically toward the customer (based on the activity
information) to be downloaded to the agent. Based on these
instructions, the agent may take any of various actions, such
as present a survey, present an advertisement, send an
upgrade notice, present a limited-time offer, deliver indi-
vidualized marketing messages, offer goods for sale and
fulfill the commercial transaction, install an upgrade or bug
fix for either an application or the agent itself, etc. Message
presentation to the customer may be timed (e.g., delayed
from the time of download) to achieve maximum impact.
Timing may be relative to individual program menu selec-
tions. For example, a message relating to a particular prod-
uct feature may be presented just after that feature has been
used. The agent may be instructed to operate with additional
applications, including applications shipped prior to the
existence of the agent. Exemplary uses include marketing,
sales, customer registration, technical support, market
research, customer surveys, usage monitoring, software test-
ing, in-product advertising, etc.

B B ’)’r -y —
Agent Process I
(,I,meméf\\) [Fook Plugin] [Agent Control
\\I_ - *| Panet Applet
Command | [Message Survey | Inet Plugin B
Processor Plugin Plugin
Plugin -]
N + 4) r 4 % Persistent Storage:
File System

Resldent Agent

Scheduler, Plugln and Cache 2
Manager A N

Remote Diatup Monitor

CommcndFﬂe PieProcessor i 7§!
«

US 2001/0018673 A1

Patent Application Publication Aug. 30,2001 Sheet 1 of 9

9
SN0y

SWaN 2L

¥ANIES

™

N

~

aNIAON I

AIVOLY N

| Y1

(9INervonddy

2AOVHNH
AN

US 2001/0018673 A1

Patent Application Publication Aug. 30,2001 Sheet 2 of 9

"uopng _m:__..__mo 1, 8up ssa.d asimiayo ‘uagng Jdaday 1, 8L
" Jssaud Jo Jeguzg Yy ases|d ‘pajjoius ag a B PINoMm noA 41 -

'‘BI|AI85 pazijenplaipul

39". m>_m 0} J8p.o Ul 30hpoud Uno jo asn pue uoiesnbiyund Jnoi -

IN0GE UoReWIQUl paz)jeunsiad wepiew jjim an, ‘sexelsdaams
pue suonowoJad snoprea ano Joy pauEgsibad Bg pue ‘SLOISIBA
aJrgry uo sadud |enads ‘abuey ou Je aldemyos Jnod o ssiepdn
peJsayo aq i noA weiboud siup ug wesboud sswomsnd pauayeud
say Jno u) ayediopled oy Nod ayau oy 8 pinom swsysis pue|dod

s ova

AL LT RmshD palialald

US 2001/0018673 A1

Patent Application Publication Aug. 30,2001 Sheet 3 of 9

wisysAg o)y
AnsiBayy
abnio|g Juajsisiad

jo1ddy jeund
[onuo)D Jusby

1055820Idald Sli{pPUDUIUICD

do JusAj - R e -
T JONUOW dnioi(] ojoudsy)
\\QVE!JJ/, - JoBpUDN «—
m//tzw_\,@o\\“w - ®Ypppuo uibnid Jeinpeyos
v Juslv Luspisay
v v ¥ ¥ IR ¥ 4
uibnid
uibnid uiBnd 10859201
uibn|d 1oy Aaning abossaN | | pUDUILIOD
H A
< i e
ubnig yoo| (_toweil
................... H T $39001d JUsBy
R vy - ————
AO0H | I suoypolddy usiD
WIoJSAg e s

US 2001/0018673 A1

Patent Application Publication Aug. 30,2001 Sheet 4 of 9

aang

N YN Joasi3n

(rorrynraedov
21y 2%5

3L i

12225 N

(Fevva 'guival)

AN YN
hoonosswry

LB

b ooy

1

U1y

US 2001/0018673 A1

Patent Application Publication Aug. 30,2001 Sheet 5 of 9

S by

E ... y)_...:?3 we =H

B YOZLEQZ wousqeg Buipul pOZELLL | -WUUM|WE uedny

_ BUG GO/ USIA kol

oy

ssayyrs

HN " d .van LRAG Qhﬂd B S%eW 0) FRRAR SYOBIYF
sos:o ¥IOGE BIOUI LRl 0} B8 GIM MO 8IA ‘SXVE D) BLINW
* WoRgd uﬁgaiogogﬂgzgaazé MON

194)() A9y}

ncc m.u_od

S L LKL A Yo DB Ao

Sttd:.xucf S_uu..u 3:3mu

o m ‘sOﬁSE u__oaom B».J un_s_uom ﬁuu m_i
> YA shoputsy E. 1 ueyoihyy

US 2001/0018673 A1

Patent Application Publication Aug. 30,2001 Sheet 6 of 9

13UUR)g UYL UIINDY 9 axnjaq unpPINd
‘Aauow aaps puo-

sesubuyf puostad 1nok a3vupur 01 J31SDI Y YO

../.. sprojumogy xelN\ sseusng jiewg\ tonesedayy X\, 2sueuiy jeuosiag [

soypddng pue so31aa0¢ ‘aemyjog I3uvUIg [RUOSIDY

9 uINNND

_ S-Eq_

B3
(oo

_ IEEL - IE

3 1660-¥TT

008-1

S¥IN¥0 INORJ

.t

sdois 0 peengiog, . pag
: [S . A
2 A“MT . . 1 i * }

| ssjstarL
Hlzl6L0s1
I ITECTE
26{121'91
AT

LL|6P9'9L
sauRRy

HORE) LUSHIINE YW QOUBLDAHS BRUOS Peyf DA

2of wok | Y e

1epse vens Buded pq oyl o) BigeIRAR $ioByo
WORRND 11OgR SI0W US| 0F YIS qom 10 ¥$JA *oINe?) Burm
JOK 1) MON

i

2

)0 oYy

By l

US 2001/0018673 A1

Patent Application Publication Aug. 30,2001 Sheet 7 of 9

fied fw aBueya oy buiob si w_f_

:M0[aq 8ARY dett nod sUaLIW0D due 18)us asea)d

- paysnessip dlA)
paysnessip JeyMawog 3
SlenneN

POYySHES PYMBWOS o)

h poysies dRA)

 BuIyasy)
sbuire g
é A3

jueg ofiie g u=03_ .
UOIISU| [R1ouRL

uig o
<107 ey 1ajua7) yuaiilisoau) 3 Burjueg suijug =

US 2001/0018673 A1

. .30 s BNERIGONRY 939U J0 UNGDIR 939) 0)
auu -\.&ng) hixt SBBINDUA D) S PNOM JNIU|
Ul nof op Hod fem el fosiie e wu)
az.x ity m:as ‘LY w&.éo

uwcta: M| Re |
190PNQ 13URDR $OSUSTRD QWO |RNIOR AMUIUOW

1eBpng AjLyuol

frobeRo A Aeunms esuedke pue owoou|

Moj4 Lsed

00085 Y Ppyy xRl L LEALE] § T WLl
00 0%e- Y pwjixey LELUEALE S UMD el

Xe| mIepey
VINSUN 17§ TISOYIES SWHA INY W DN

B,

wrss] O [ml senn| wed [X wep oo

soRQ toq.om

stousnyy juauwpreau] oson

T aﬁéﬁ%ﬁ%&%@éﬁ%ﬁ?ﬁ @

Patent Application Publication Aug. 30,2001 Sheet 8 of 9

G _:Ec: EACTTie)
. 3 st suny R

%:g% :

US 2001/0018673 A1

Patent Application Publication Aug. 30,2001 Sheet 9 of 9

4 _ "~ Bunoey)

OVEVAFITIMN

gy

26/€/01)
P 671721
1931 4 69 26/6/01
sopuy| 4 @grl Z6/brOL
gord| ¢ 2By L6/2/0L
wooigj 4 98y 2672701
goed| ¢ sar| Z6/z/0L
aundo| 4 vBy| 46/2/01
LT mw £8P 2672701
18oed| ¢ eBy| /87201
oaRL| 418y 2B/2/0L
gaed| 4 08y /672401
andey N Ry

| A uadey iepsties) | puly ssjeqg
, . usg ubie] sjlom - Butioayy ==

US 2001/0018673 Al

INTERACTIVE CUSTOMER SUPPORT FOR
COMPUTER PROGRAMS USING NETWORK
CONNECTION OF USER MACHINE

BACKGROUND OF THE INVENTION
[0001] 1. Field of the Invention

[0002] The present invention relates to customer support
for computer programs.

[0003] 2. State of the Art

[0004] Customer support is service that computer and
software manufacturers (as well as third-party service com-
panies) offer to customers. In the case of an Independent
Software Vendor (ISV), customer support may include a
phone number for customer to call for advice and trouble-
shooting, a bulletin-board system staffed by service engi-
neers, or a forum within an on-line service. Software updates
may be downloaded that correct known bugs. Internet-based
customer support, problem resolution and call tracking has
been recently introduced.

[0005] Customer support may be mutually beneficial to
both the customer and an ISV. Customer support enables the
customer to get the most out of a software product. At the
same time, customer support fosters a relationship between
an ISV and a customer and provides “up-sale” opportunities
for the ISV.

[0006] In the past, however, customer support has been
initiated by the customer on a hit-or-miss basis. Ironically,
when things go most smoothly for the customer, indicating
a job well-done on the part of the ISV, the customer is least
likely to initiate a customer support relationship, and up-sale
opportunities are most likely to be missed. Furthermore,
customer support has traditionally been human-intensive.
Getting through to a service engineer may be difficult
enough in itself, but then the customer must spend a sig-
nificant amount of time acquainting the service engineer
with the customer’s individual needs and circumstances. A
small “dose™ of support is then given. The next occasion for
interaction is likely to be much the same. No opportunity
exists for broad-based, systematic, individualized customer
support.

[0007] U.S. Pat. No. 5,406,269 describes a customer intel-
ligence system in which surreptitious telephone reporting
calls are made by modem from remote equipment to one or
more monitoring sites. Various uses for information gath-
ered in this manner are proposed, including determining
those customers who are ready for upgrades, showing poten-
tial customers usage statistics pertaining to the installed
base, etc. Communications is one-way, in the uplink direc-
tion only. Furthermore, surreptitiousness greatly restricts the
manner in which the system may be used and raises many
issues of privacy and intrusiveness.

SUMMARY OF THE INVENTION

[0008] The present invention, generally speaking, pro-
vides for broad-based, systematic, individualized, interac-
tive customer software support through a two-way, volun-
tary automated exchange of information between a software
agent installed on a customer’s machine and a server
machine via a wide area computer network, e.g., the Inter-
net. Communication between the agent and the server is

Aug. 30, 2001

optimized to be unobtrusive or transparent, using spare
bandwidth of intermittent Internet connections, for example.
The agent is software non-specific and may be instructed to
operate with respect to any arbitrary software program, and
may further be instructed at various different times to
operate with respect to various different software programs,
including multiple different software programs on a single
machine. The agent, with the user’s informed consent,
gathers activity information about the operations of the
software program(s) and uploads this information to a
particular server machine within a distributed server
machine architecture, where it is stored in a database on a
per-software-copy basis. A rules engine may cause instruc-
tions carrying a message targeted specifically toward the
customer (based on the activity information) to be down-
loaded to the agent. Based on these instructions, the agent
may take any of various actions, such as present a survey,
present an advertisement, send an upgrade notice, present a
limited-time offer, deliver individualized marketing mes-
sages, offer goods for sale and fulfill the commercial trans-
action, install an upgrade or bug fix for either an application
or the agent itself, etc. Message presentation to the customer
may be timed (e.g., delayed from the time of download) to
achieve maximum impact. Timing may be relative to indi-
vidual program menu selections. For example, a message
relating to a particular product feature may be presented just
after that feature has been used. The agent may be instructed
to operate with additional applications, including applica-
tions shipped prior to the existence of the agent. Exemplary
uses include marketing, sales, customer registration, tech-
nical support, market research, customer surveys, usage
monitoring, software testing, in-product advertising, etc.

BRIEF DESCRIPTION OF THE DRAWING

[0009] The present invention may be further understood
from the following description in conjunction with the
appended drawing. In the drawing:

[0010] FIG. 1 is a generalized block diagram of the
present system,

[0011] FIG. 2 is an illustration of a preferred customer
enrollment screen display;

[0012] FIG. 3 is a more detailed block diagram of the
agent of FIG. 1;

[0013] FIG. 4 is a diagram illustrating a distributed server
architecture that may be used in the system;

[0014] FIG. 5 is an illustration of a screen display in
which the time and place of message delivery is controlled;

[0015] FIG. 6 is an illustration of a screen display result-
ing from the user clicking through during display of the
screen display of FIG. 5;

[0016] FIG. 7 is an illustration of a screen display in
which the message is a survey;

[0017] FIG. 8 is an illustration of a screen display in
which the message relates to a software update; and

[0018] FIG. 9 is an illustration of a screen display in
which the message is a banner advertisement.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

[0019] Referring now to FIG. 1, the general architecture
of the present system will be described. A user machine is

US 2001/0018673 Al

assumed to include a run-time environment, provided by an
operating system, a Web browser or the like, and to be
running one or more computer programs. The computer
programs may be software applications, system software or
embedded computer programs. Systematic, individualized,
interactive customer software support is made possible by
equipping the user machine with a persistent client, or agent,
that engages in two-way communication with a server. The
agent may be installed concurrently with an application,
may be pre-loaded on the user’s machine, may be separately
installed from a disk or download, etc. The connection
between the agent and the server is a virtual connection, i.e.,
a connection that time-shares a physical communications
channel with other communications. In an exemplary
embodiment, the virtual connection uses spare bandwidth of
intermittent Internet connections to communicate with the
server. The agent can and typically does interact with the
application without a concurrent Internet connection.

[0020] Communications between the agent and the server
are voluntary. In an exemplary embodiment, when the agent
is first activated on behalf of a particular application, it
displays to the user a preferred customer enrollment screen
display such as that of FIG. 2. By clicking on the appro-
priate button, the user may accept or decline to participate in
the preferred customer program. If the customer accepts,
then the customer enters into an invited relationship with the
software vendor and agrees to the software vendor main-
taining personalized information about the configuration and
use of the application in order to provide individualized
service.

[0021] Communications between the agent and the server
are also two-way. In the uplink direction, the agent com-
municates control, configuration and usage information,
registration information, survey information, etc. In the
downlink direction, the server communicates non-execut-
able content, executable content, or both, including control
information, agent updates, etc. Separate servers may be
responsible for delivering non-executable content and
executable content, as described more fully hereinafter.
Non-executable content may include tips, offers, advertise-
ments, surveys, etc. Note that non-executable content may
nevertheless be active, i.e., contain HTTP links enabling the
user to “click through” to related Web sites. Executable
content may relate to the application or to the agent or both.
Executable content related to the application may include
updates, bug fixes, additional code modules, etc. Executable
content related to the agent allows the agent to be transpar-
ently upgraded with new capabilities in the field, avoiding
the potential problem of agent obsolescence.

[0022] Referring to FIG. 3, a detailed block diagram of
the agent is shown.

[0023] In an exemplary embodiment, the agent follows a
plug-in architecture. The agent process therefore includes a
resident agent and various plug-ins that interface to the
resident agent through a plug-in APL. In an exemplary
embodiment, the plug-ins include a command processor
plug-in, a message plug-in, a survey plug-in, an Inet plug-in
that handles virtual connections to the Internet, and a hook
plug-in. The message plug-in, survey plug-in, and possibly
other plug-ins are capable of taking actions within the
process and User Interface (UI) space of the client applica-
tions. Other plug-ins may be included with the agent or

Aug. 30, 2001

added to the agent by download. If a plug-in needs the
assistance of another plug-in, the agent will pass parameters
transparently to the target plug-in. Persistent storage is
provided for the plug-ins as well as for the resident agent,
e.g., within the registry file system.

[0024] The modularity resulting from plug-in architecture
of the agent is important from the standpoint of allowing for
user-transparent operation. The core agent and the plug-ins
are all small modules that are easily downloadable. The time
needed to download a module is typically only a few
seconds.

[0025] Core tasks of the agent include the following:

[0026] 1.Manage plug-ins and inter-plug-in commu-
nication.

[0027] 2. Download content (command files) and
determine an appropriate command interpreter for
handling the command files. Retrieve the command
interpreter plug-in from the server and invoke it with
the downloaded command file.

[0028] 3. Maintain state (e.g., the current command
file) to survive system crashes and restarts. The
operating system registry may be used for persistent
storage of state information including the configu-
rations of the plug-ins, the status of events and the
registered client applications.

[0029] 4. Monitor the system Internet connection and
schedule uploads and downloads.

[0030] 5. Track target applications and determine
their usage. From this information and the command
file data, schedule actions to be taken in the target
applications user interface (UI) space through the
plug-in interface.

[0031] 6. Change its level and type of activity, includ-
ing becoming inactive in response to a server.

[0032] The agent is capable of interacting with software
applications in all respects without modification of the
application itself. In particular, a small system hook (e.g., a
DLL) is inserted into the windows message processing loop.
Using data provided by the agent, the system hook deter-
mines if any relevant actions are happening within a moni-
tored application and if so, passes this information off
asynchronously to the hook plug-in. The system hook is
designed to not degrade the user’s system performance or
application performance. More particularly, in an exemplary
embodiment, the agent when it first launches loads the hook
plug-in, which starts execution of a separate thread. This
thread interacts with the system hook and is responsible for
selecting messages of interest. The separate thread ensures
that processing of the messages of the client application are
not noticeably slowed down. Note that, to prevent recursion
in the message processing, the system hook ignores any
messages related to the agent itself.

[0033] The Inet plug-in is responsible for handling all
Internet traffic. In an exemplary embodiment, it supports
various types of Internet transactions, including registering
an agent with the server and obtaining a user ID, retrieving
a command file using the user ID, uploading data to the
server, and downloading resources from the server. Data
may be exchanged using POST and GET commands, for

US 2001/0018673 Al

example, as in the HTTP1.1 protocol. The Inet plug-in is
designed to gracefully fail if any transaction is not com-
pleted across the Internet.

[0034] The command processor plug-in is responsible for
converting the command file into tangible actions. For
example, it scans the command file and schedules all
resource downloads required by the command file, expands
any macros, and generates a clean version of the command
file. It then processes the command file, merges it with
existing command files, removes all completed events from
the command file, and schedules all events and actions to be
taken by the agent. Finally, it marks the command file as
active in persistent storage and uploads a command line
status update that allows the server to track the execution of
events in the client application.

[0035] An agent control panel applet enables user inter-
action with the agent to control prospective operation of the
agent, although typically the user will not have occasion to
use the control panel. As described previously, the user may
accept or decline the invitation to become a preferred
customer. The user may be provided with additional control
beyond this initial decision. For example, the user may
choose at a later time to modify the degree of interaction, the
type or amount of information transmitted, or withdraw
entirely from the preferred customer program and discon-
tinue all communications between the agent and the server.
The user may wish instead to continue uplink operations
(e.g., monitoring by the agent to facilitate conventional
kinds of customer service) but to discontinue downlink
operations. Alternatively, the user may wish to continue
uplink operations and a limited subset of downlink opera-
tions, e.g., upgrade notification. Various other options may
be provided.

[0036] In an exemplary embodiment, the resident agent
includes a scheduler/manager, a remote dialup monitor, and
a command file pre-processor. The resident agent also
includes a client map, an event map and a plug-in map. The
resident agent is responsible for dynamically maintaining
the configuration and status of active plug-ins, the registered
client applications and the events working on the client
applications. A command queue contains actual event infor-
mation and is processed upon each agent start. In an exem-
plary embodiment, the agent is started by a machine start
table within the registry of the operating system.

[0037] The scheduler/manager is responsible for establish-
ing periodic Internet connections with the server, through
the Inet plug-in. If a connection becomes available, each
client object is allowed bandwidth to service the client’s
needs. Subsequently, all pending POST operations are pro-
cessed. The scheduler/manager can be invoked either via an
event driven method, in the case of dialup Internet access, or
at periodic intervals in the case of direct (or proxied)
LAN-based Internet access. In the case of dialup access,
different dialup access methods may be used depending on
the software configuration of the user machine. The remote
dialup monitor determines which dialup access method is
used and establishment of an Internet connection is detected
accordingly.

[0038] The client map, event map and plug-in map
together operate to establish “client channels” though which
interaction between the clients and the server occurs. The
client map consists of one or more client objects. At a

Aug. 30, 2001

minimum, a privileged client object is present that is allowed
to add clients to and remove agents from the client map and
to add agents to and remove agents from the plug-in map. All
other client channels can only be used to schedule events and
direct the agent to download content from a server. A client
object within the client map has a corresponding event
object within the event map and a corresponding plug-in
object within the plug-in map. The event map in combina-
tion with the client map causes user interactions in the client
applications UI space.

[0039] Note that preferred support for copies of applica-
tions already in the field can be added simply by causing the
agent to download client objects for those applications. A
client object (or “affinity module”) contains information that
allows the system hook to recognize events from a particular
application.

[0040] The agent checks in with the server when a check-
in interval for the application has elapsed. The agent may
receive back a command file from the server, which the
agent then interprets. The interpretation of the command file
may cause the agent to fetch resources from the server
and/or place information back onto it. The agent may also be
instructed to check-in for another command file. The privi-
leged client is also considered an application for the agent.
Therefore the agent checks in with the appropriate server on
a check-in interval separate from the check-in intervals of
other applications. Also, an application’s command file may
cause the privileged client to check in, or vice versa.

[0041] When the agent has acquired the resources and
commands from the server to actually do some work, it can
be instructed to immediately display appropriate messages
to the user, or (more commonly) to wait until the target
application is running, and work in the context of the
application. The agent converts system event data into
tangible actions events for the attached plug-ins, with mes-
sages appearing to the user as coming from the vendor,
within the application’s screen window and only while the
application is running. There results a sense of connected-
ness and trust between the customer and the vendor. A
typical sequence of events is as follows:

[0042] 1. The system hook determines that a new
application has launched or gotten the user’s focus.

[0043] 2. The agent queries its client objects to see if
the application is a client. If it is not a client, the
agent remains dormant.

[0044] 3. A valid client with user input will cause the
agent to instruct the system hook to start detailed
monitoring of the application and route selected
application messages through the hook plug-in.

[0045] 4. The hook plug-in will reflect the message
asynchronously to the agent, which will catalog the
events under the current user’s name.

[0046] 5. The agent queries its client event map to
look for a match.

[0047] 6. If a match exists, the event is executed,
which could include invoking a plug-in to undertake
action in the application’s UI space. If visible con-
tent is shown in the application’s Ul space, the client
application is temporarily disabled and cannot
receive user focus.

US 2001/0018673 Al

[0048] 7. If any uploadable content is generated
during this event, it is passed to the Inet plug-in,
which will either send it or schedule it to be sent the
next time bandwidth is available.

[0049] 8. After completion of the event, the user
focus is set back to the client application.

[0050] 9. The agent returns to Step 4 above until the
client application loses focus. When the client appli-
cation loses focus, the agent transfers any client
application-related data to persistent storage, at
which point the agent reverts to Step 1 above.

[0051] Having described the structure and function of the
agent, the server will now be described.

[0052] The essential job of the server is the delivery of an
appropriate command file to particular agent. The command
files in the agent determine the action that the agent is going
to take—which of the various kinds of activities it will carry
out, at what time, with respect to what user operation, etc.
The server maintains a record for every single user of an
application. When the agent working for one of its user’s
connects to the server, it consults a table of rules that
determines which, if any, of the potential command files that
the server has for that application are appropriate for that
agent. Those rules are predicates that are based on all the
data in the database relative to that user.

[0053] An example of a rule might be “If installation of
this application took place 60 or more days ago, send
Command File A,” which causes the agent to perform some
action, “and if installation took place less than 60 days ago,
send Command File B,” which takes some other action. The
two actions would differ with respect to the degree of
experience that particular user has with the program. For
example, in the case where an upgrade has become avail-
able, a publisher may choose to send one upgrade message
to experienced users, more appropriate to their experience
level, and another upgrade message to less experienced
users, more appropriate to their experience level. The deter-
mination of experience level may be based, for example, on
the time elapsed since installation.

[0054] The server applies rules that have been created in
a table sequentially to determine which if any of those rules
are true for a particular agent that is querying the server at
a particular point in time. Upon discovering that one or more
of those rules “fires,” i.e. is true, then the corresponding one
or more command files are downloaded to the agent. The
publisher therefore enjoys very “fine-grain” control of the
activities of an agent based on the attributes of that agent.
Very sharp targeting results in which particular information
is sent to particular agent based its characteristics and its
history.

[0055] As may be appreciated from the foregoing descrip-
tion, the server has two different types of responsibilities.
One function of the server is to maintain the agent. Opera-
tions to maintain the agent occur through the control channel
described previously. Another function of the server is to
provide customer support for specific client applications.
These two distinct functions can be combined on one
physical server machine or on multiple physical server
machines. More preferably, these two functions are sepa-
rated, with agent maintenance being handled by a technol-
ogy provider server and customer support being handled by

Aug. 30, 2001

a collection of software vendor servers. In general, execut-
able content is provided from the technology provider server
across the control channel and non-executable content is
exchanged with software vendor servers across other chan-
nels as shown in FIG. 4. In this manner, executable content
may be assured to be virus-free. Also, private vendor-
customer information may be passed directly to the vendor
without being passed through a third party. For tracing and
billing purposes, the privileged client periodically connects
to the technology provider server and informs it of activities
of the agent on behalf of various client applications.

[0056] Identifiers are allocated to support the foregoing
separation of functions. In particular, the agent when it is
first activated seeks a connection opportunity and, when a
connection is established, obtains an agent ID from the
technology provider server through the control channel. At
the same time or at a later time, the agent receives from the
server a command file instructing the agent to look for a
particular application. If that application is found installed
on the user’s system, a client ID is obtained for that copy of
the application. Only the technology provider server need be
aware of the correspondence between agent IDs and client
IDs. Transactions between the agent and the vendor server
use only the client ID.

[0057] At a vendor server, a Relational Database Manage-
ment System (RDBMS) maintains a per-client-copy data-
base of information uploaded from various instances of an
application. In an exemplary embodiment, the agent collects
numerical counts for each menu bar item in a client appli-
cation. The vendor may determine from the database how
often the file:print command has been used, for example.
The RDBMS includes a rules engine. Business rules are
established governing the actions to be taken in relation to
a particular copy of the application depending upon the data
stored for that application. When action is to be taken, a
command file is prepared and transferred to the agent.

[0058] Note that the system has the ability to precisely
target the moment a message dialog appears in a client
application. The vendor can pick an operation from among
a menu hierarchy of the application, a time delay, and a
number of times to repeat the operation until it is completed
with a click-through or other affirmative response. The
system also has the ability to determine who among the
vendors installed base will see a particular message. Criteria
can be based on demographics, responses to past offers,
responses to past surveys, usage information, time since the
application was installed, even random selection. Any infor-
mation in the database can be used to determine who gets a
particular message.

[0059] The following examples illustrate possible actions
of the server triggered based on data stored within the
database:

[0060] 1.Send all users a message before or after use
of a particular feature after that feature has been used
a specified number of times (FIG. 5). The message
may include an HTTP link, allowing for click-
through (FIG. 6).

[0061] 2.Present asurvey to all users after a specified
time has passed or a specified level of usage has been
achieved (FIG. 7).

US 2001/0018673 Al

[0062] 3. Present an update message to all users at
next use of the application or a particular feature of
the application (FIG. 8).

[0063] 4. Present a banner ad to each user upon
application start up, with the banner ad being chosen
based on an ad presentation history for that user
(FIG. 9).

[0064] Preferably, a Web-based administration tool is pro-
vided to allow business rules to be set up and changed
through a familiar Web-form interface. Using the Web-form
interface, the vendor can, for example, define a survey, to
whom the survey should be presented, and how it is to be
timed within the vendor’s application. After a survey is
initiated, the vendor can go to a Web site and view the
progress of the survey, including the responses in real time
as they come in.

[0065] The following Appendix shows a sample command
file. It runs a plug-in (pil) during the vendor’s application
and returns the result tot he server. Once this is done, it does
a check-in so that the server can send follow-up commands.
It also retrieves some usage information from the registry
immediately.

APPENDIX

Here is a sample command file. It runs a plugin (pil) during the
vendor’s app and returns the result to the server. Once this is done,
it does a check-in so that the server can send follow-up commands. It
also retrieves some usage information from the registry immediately:
[cilhttp:/fullcircle-sys.com/cil.fep[flags]“-p”
[eventmanager Jhttp://fullcircle-sys.com/acem.fep
[define Jplugname[=]http://fullcircle-sys.com/ad/pil.fep
[define Jplugi[=]http://fullcircle-sys.com/ad/pili?UID,$TID
[define Jplugo[=]http://fullcircle-sys.com/ad/pilo ?$UID,$ TID
[define [soon[=]31-Dec-1997
[transid]12345
[cobegin]
[get]$plugname
[get]$plugi-
[coend]
[wait]app__running // Really should be on line with plugin command
[plugin]$plugname| command [1[input]$plugi[output plugo[expires]soon
[postlplugo
[delete]plugo
[pause]15
[checkin]
[define Jusage[=]http://fullcircle-sys.com/ad/usage1 ?$UID,$TID
[transid]9876
[copyl$usage[=]reg://some.path.in.the.registry
[post]$usage
Here is another sample command file:

t10040001.fcc
[cilhttp:/fel.previewsoft.com/resources/feemd32.fep[Function]
80000[Version]0102[UnLoad]1[NameJfccommand01[command]1[flags]-p
// Last Updated 11/10/97 by SG
[eventmanager Jhttp://fcl.previewsoft.com/acem.fep
/DEFINES
I
[define Jp6[=]http://fcl.previewsoft.com/resources/fesurvey32.fep[Functi
on]60000[Version]0105[UnLoad]1[Name JFCMultipleDialogPlugin
[define Jplugi[=]http://fcl.previewsoft.com/resources/INTUIT
LOGO.BMP
// trigger on backup to offer customer a zip drive
[define]qziq[=]http://fcl.previewsoft.com/resources/q_ zip.fer
I
[define Jplugo[=]http://fcl.previewsoft.com/scripts/fulleircle_ scripts/f
c__return__data01.idc?#UID&#TID
[define [soon[=]31-Dec-1997
[define Jusage[=]http://fcl.previewsoft.com/scripts/fulleircle_ scripts/f
c__return__data01.idc?#UID&#TID
/TRANSACTIONS

Aug. 30, 2001

APPENDIX-continued

I

[transid]10040001

[cobegin]

[get]sp6

[get]$plugi

[get]$qzip

[coend]

// use backup menu to offer a promotion with Iomega for a zip drive
[waitJapp__running[menucmd]7010[delay J0[skip J0[run]9[plugin|$p6
[command]1[input]$qzip[output]$plugo[expires]$soon

1

[0066] 1t will be appreciated by those of ordinary skill in
the art that the invention can be embodied in other specific
forms without departing from the spirit or essential character
thereof. The presently disclosed embodiments are therefore
considered in all respects to be illustrative and not restric-
tive. The scope of the invention is indicated by the appended
claims rather than the foregoing description, and all changes
which come within the meaning and range of equivalents
thereof are intended to be embraced therein.

What is claimed is:

1. A method of providing individualized, interactive cus-
tomer support wherein a user machine is at least intermit-
tently connected to a wide area computer network and
receives content over the wide area computer network, the
method comprising the steps of:

an agent monitoring operation of a computer program
running on the user machine;

the agent communicating monitored information through
the wide area computer network to a remote server; and

the agent receiving from the server content affecting

operation of the computer program.

2. The method of claim 1, comprising the further step of
presenting content received from the server within a user
interface space of the computer program.

3. The method of claim 2, wherein the content is presented
in timed relation to a monitored event.

4. The method of claim 1, comprising the further step of
presenting the user with an option to accept or decline the
customer support, and inputting a response of the user.

5. The method of claim 1, wherein monitoring comprises
gathering usage data with respect to the computer program.

6. The method of claim 5, wherein the usage data includes
numerical counts for each of multiple menu bar items.

7. The method of claim 5, comprising the further steps of:

the server accumulating usage data for each of multiple
computer programs; and

the server determining content to be received for a par-
ticular computer program based on accumulated usage
data for that computer program.
8. The method of claim 7, wherein the server performs
steps comprising:

receiving an identifier identifying an instance of a com-
puter program; and

receiving and storing in a database information concern-
ing usage of that instance of the computer program.

US 2001/0018673 Al

9. The method of claim 7, wherein the server performs
steps comprising:

receiving an identifier identifying an instance of a com-
puter program,

evaluating each of multiple rules stored in a database to
determine which rules are applicable to that instance of
the computer program; and

second to an agent for that instance of the computer
program a corresponding command for each rule deter-
mined to be applicable to that instance of the computer
program.

10. The method of claim 7, comprising the further step of
using a Web-based administration tool to set up rules deter-
mining what content is to be received by what computer
program based on accumulated usage date.

11. The method of claim 7, wherein the content is non-
executable content.

12. The method of claim 11, wherein the non-executable
content is active content containing at least one hypertext
link.

13. The method of claim 11, wherein the non-executable
content is one of the following: an advertisement, a promo-
tional offer, a survey, and a program usage hint.

14. The method of claim 7, wherein the content is
executable content.

15. The method of claim 14, wherein the executable
content is one of the following: a bug fix, an agent plug-in,
a replacement agent, and a module or plug-in for the
computer program.

16. The method of claim 1, wherein communicating
comprises detecting a connection to the wide area computer
network and using a small fractional portion of bandwidth
available to the connection.

17. The method of claim 1, wherein the monitoring,
communicating and receiving steps are performed by an
agent running of the user machine.

18. The method of claim 17, wherein the computer
program and the agent communicate only indirectly through
messaging facilities of a run-time environment of the com-
puter program.

19. The method of claim 18, comprising the further steps
of storing state information for the agent within persistent
storage.

20. The method of claim 19, wherein an operating system
registry is used for persistent storage.

21. The method of claim 18, wherein the agent operates
in behalf of multiple distinct and separate computer pro-
grams.

Aug. 30, 2001

22. The method of claim 18, wherein the agent comprises
a privileged client object and at least one other client object,
wherein communicating comprises the privileged client
object communicating with a first server across a control
channel.

23. The method of claim 22, wherein communicating
comprises the other client object communicating with a
second server across a channel other than said control
channel.

24. A system for providing individualized, interactive
customer support wherein a user machine is at least inter-
mittently connected to a wide area computer network and
receives content over the wide area computer network,
comprising:

a server connected to the wide area computer network;
and

an agent running on the user machine, comprising:

means for monitoring operation of a computer program
running on the user machine;

means for communicating monitored information
through the wide area computer network to a remote
server; and

means for receiving from the server content affecting
operation of the computer program.

25. The apparatus of claim 24, further comprising means
for storing in persistent storage state information for the
agent.

26. The apparatus of claim 24, wherein said means for
monitoring comprises an operating system hook.

27. The apparatus of claim 24, wherein the agent follows
a plug-in architecture.

28. The apparatus of claim 27, wherein the wide area
computer network is the Internet, and a required plug-in of
the agent is an Internet plug-in for handling Internet traffic
between the agent and the server.

29. The apparatus of claim 22, wherein the agent com-
prises a plurality of code modules each of a size such that an
average download time of a code module is only a few
seconds.

30. The apparatus of claim 29, wherein the agent com-
prises a plurality of the following modules: an agent core
module, a command processing module, a message module,
a survey module, an Inet module, and a hook module.

